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An Intro to our Chapter Book

M. Namakshenas and M. S. Pishvaee, Data Driven Robust
Optimization, in Robust and Constrained Optimization: Methods
and Applications, D. Clark, Ed. NOVA SCIENCE PUBLISHERS,
INC., 2019, pp. 140.
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A punchline on RO

• BOX (Interval) uncertainty space

• Ellipsoidal uncertainty space

• Polyhedral uncertainty space (Budgeted uncertainty space)
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Motivations to DDRO

SIM et al.

DDRO is a Marriage of Robust Optimization (RO) and Stochastic
Programming (SO).

Reliability

Bring the RO to a real and reliable taste.

Conservatism

To produce less conservative models.

The Golden Key!
The uncertainty (ambiguity) set is the heart of RO.
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Motivations to DDRO

Concept 1.

1t 2t nt

No realization No realization No realization

Concept 2.

1t 2t nt

No
realization

Partial 
realization

Full 
realization

only support is 
available

Question. How is it possible to update an RO model in t2?

5



o
rt

im
e
s
.i
r

Motivations to DDRO

Concept 1.

1t 2t nt

No realization No realization No realization

Concept 2.

1t 2t nt

No
realization

Partial 
realization

Full 
realization

only support is 
available

Question. How is it possible to update an RO model in t2?

5



o
rt

im
e
s
.i
r

Motivations to DDRO

Concept 1.

1t 2t nt

No realization No realization No realization

Concept 2.

1t 2t nt

No
realization

Partial 
realization

Full 
realization

only support is 
available

Question. How is it possible to update an RO model in t2?

5



o
rt

im
e
s
.i
r

Motivations to DDRO

Figure: A conservative uncertainty set vs. a realized uncertainty set w.r.t
a posteriori data, A priori worst case vs. realized worst-case w.r.t a
posteriori data.
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Distributionally Robust Optimization

Moment-based uncertainty sets

Moment-based uncertainty sets is comparable to that of the
classical ellipsoidal uncertainty sets (we don’t know the underlying
distribution). Suppose that the support S, mean µ, and
co-variance Σ of ξ is known explicitly. Hence, the moment-based
uncertainty set U(S, µ,Σ) is defined such that the convexity of S,
µ ∈ Int(S), and Σ ∈ PSD as follows:

U(S, µ,Σ) =


P (ξ ∈ S) = 1,
EF [ξ] = µ,
EF
[
(ξ − µ)(ξ − µ)T

]
� Σ.
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Distributionally Robust Optimization

Expected Utility (Loss) Function

The goal is to minimize the worst case outcome of the expected
utility function.

minimize
x ∈ S

max
F∈U

EF [g(x, ξ)] (1)
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Distributionally Robust Optimization

Conjecture

The robust counterpart of the Problem according to U can be
formulated as a semi-definite program (SDP).

Theorem 1

Given the uncertainty set U , if is continuous and differentiable in x,
the robust counterpart of the Problem (1) is as follows:

minimize
x, t, p,Q

t+ µT p+
〈
Σ + µTµ,Q

〉
subject to t+ ξT p+ ξTQξ ≥ g(x, ξ), ∀ξ ∈ S,

t ∈ R, p ∈ Rm, Q ∈ Rm×m,
Q � 0, x ∈ X.

(2)
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Distributionally Robust Optimization

Theorem 2

Given the support S = {ξ |Aξ ≤ b} 6= ∅ be a polyhedral set with
A ∈ Rn×m and b ∈ Rn, the problem (2) is reduced to the following
problem:

minimize
x, t, p, λ,Q

t+ µT p+
〈
Σ + µTµ,Q

〉

subject to

 t− γ0k(x)− λTk b
(
p− γk(x) +ATλk

)T
2

p− γk(x) +ATλk
2

Q

 � 0, ∀k ∈ K,

Q � 0,

λk ∈ Rn
+, k ∈ K.

(3)
Proof. Refer to the chapter book.
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Distributionally Robust Optimization

Example

The standard portfolio optimization model is also known as the
Markowitz portfolio model is formulated as follows:

maximize
x

xT r̃

subject to 1x = 1,

x ∈ Rm
(4)
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Distributionally Robust Optimization

Setup

• Assume that the return vector r is uncertain with the support
set Sr = {ξ(r)|

∑
i∈I aiξi

(r) ≤ b}, where the distribution F (r)

of the random return vector belongs to some uncertainty set
U (r) that encompasses the moment information µ(r) and Σ(r).

• The utility function should be defined in terms of a linear
piece-wise function, γ0(x) = 0 and γ(x)T ξ(r) = xT r̃.

DRO of Problem 4 can be deduced as follows:

maximize
{x ∈ Rm|1x = 1}

min
F (r)∈U(r)

EF (r)

[
g(x, ξ(r)) = xT r̃

]
(5)
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Distributionally Robust Optimization

Sample Data.

µ(r) =
(
35.80 69.50 50.15

)

Σ(r) =

 184.80 −144.10 3.66
−144.10 416.89 73.81

3.66 73.81 97.18



13



o
rt

im
e
s
.i
r

Distributionally Robust Optimization

SDP Counerpart.

minimize
x, t, p, λ,Q

t+ 35.80p1 + 69.50p2 + 50.15p3 + 8811.7q11 + 8482.8q12+

8630.6q13 + 8482.8q21 + 9043.8q22 + 8700.7q23 + 8630.6q31+

8700.7q32 + 8724.1q33

subject to 1x = 1,
t− λb



p1
p2
p3

−

x1
x2
x3

+λ


a1
a2
a3




T

2
p1
p2
p3

−

x1
x2
x3

+λ


a1
a2
a3


2

q11 q12 q13
q21 q22 q23
q31 q32 q33




� 0,

Q � 0, x ∈ X
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Distributionally Robust Optimization

CVX Package.
n=3;

b = 2;

mu = [ 35.8000 69.5000 50.1500 ];

covm = [ 184.8000 -144.1053 3.6632

-144.1053 416.8947 73.8158

3.6632 73.8158 97.1868];

A = [ 2 ; 1 ; 1 ];

I = ones(1,n);

cvx_begin sdp

variable t

variable lambda

variable x(n,1)

variable p(n,1)

variable Q(n,3) symmetric

minimize(t + mu*p + sum(sum(((covm + mu*mu' ).*Q))));

#Constraints

[t-lambda*b (p-x+A*lambda)'/2 ;...

(p-x+A*lambda)/2 Q ] >= 0 ;

I*x == 1;

Q >= 0;

p(1) >=0 ; p(2) >=0 ; p(3) >=0 ;

x(1) >=0 ; x(2) >=0 ; x(3) >=0 ;

lambda >= 0;

cvx_end
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Machine Learning & RO

C. Shang, X. Huang, and F. You, Data-driven robust optimization based
on kernel learning, Comput. Chem. Eng., vol. 106, pp. 464479, 2017.
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Machine Learning & RO

Pros

• The robust counterpart is convex and linear w.r.t x (LP).

• The accuracy and outliers can be controlled by the parameter
ν.

• This approach ensures that the final uncertainty set is closed
and convex.

Cons
• A lot of data preparation and pre-calculations are needed.

• The model size is intractable when the kernel matrix size is
increased to a certain number.

17



o
rt

im
e
s
.i
r

Machine Learning & RO

Pros

• The robust counterpart is convex and linear w.r.t x (LP).

• The accuracy and outliers can be controlled by the parameter
ν.

• This approach ensures that the final uncertainty set is closed
and convex.

Cons
• A lot of data preparation and pre-calculations are needed.

• The model size is intractable when the kernel matrix size is
increased to a certain number.

17



o
rt

im
e
s
.i
r

Cutting Hyper-planes & RO

Definition 1

Given C number of cutting hyper-planes with the gradient vector
Q ∈ RC×|Ji| and the intercept d ∈ RC , the hyper-plane h(ξ) is
defined over the random vector ξ as follows (|Ji| is the number of
the uncertain parameter in the ith constraint set):

h(ξ) = Qξi + d⇔ hc(ξ) = qcjξij + dc,

∀ i,∀ j ∈ |Ji|,∀ c ∈ {1, . . . , C}
(6)

Note. You already know the definition of ξ.
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Cutting Hyper-planes & RO

A Punchline.

1

2
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Cutting Hyper-planes & RO

The robust counterpart of the below problem is needed!

maximize
x ∈ X

cTx

subject to āix+ max
ξi∈U∞(h)

{âiξix} ≤ bi, ∀i,

U∞(h) = {ξ|‖ξ‖∞ ≤ 1, h(ξ) + d ≥ 0}

(7)
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Cutting Hyper-planes & RO

Theorem 3

The robust counterpart of the problem (7) w.r.t U∞(h) is as
follows:

maximize
x ∈ X, τ ∈ R+

cTx

subject to āix+
∥∥âix+QT τ

∥∥
1

+ dT τ ≤ bi, ∀i.
(8)

Proof. On the board.
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Cutting Hyper-planes & RO

Theorem 4

The robust counterpart of the problem (7) w.r.t U2(h) is an SOCP
as follows:

maximize
x ∈ X, τ ∈ R+

cTx

subject to āix+ λ+ dT ≤ bi, ∀i,∥∥âix+QT τ
∥∥2
2
≤ λ2.

(9)

Proof. Refer to the chapter book.
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Cutting Hyper-planes & RO

Home Exercise.

Find the robust counterpart of the problem (7) w.r.t U1(h).

Note. So Eaaaaaasy!.
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Cutting Hyper-planes & RO

Example

Given the uncertain parameters ã1 = 2± ξ1 and ã2 = 1± 0.5ξ2,
2000 samples are generated according to a bi-variate normal
distribution w.r.t µ̂1, µ̂2, and Σ̂.

maximize
x ∈ R2

+

2x1 + 3x2

subject to a1x1 + a2x2 ≤ 5.

(10)

µ̂1 = 2, µ̂2 = 1

Σ̂ = cov(a1, a2) =

(
1 1.5

1.5 3

)
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Cutting Hyper-planes & RO

Example Continued.

We produce C = 4 cutting planes with ε = 0.05 as follows:

Q =


−12 3
−12 4

2 1
3 1



d =


−13

2
1
−1


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Cutting Hyper-planes & RO

The robust counterpart.

maximize
x ∈ R2

+, τ ∈ R4
+

2x1 + 3x2

subject to

2x1 + x2 + |x1 − 12τ1 − 12τ2 + 2τ3 + 3τ4|+
|0.5x2 + 3.5τ1 + 3.5τ2 + 0.5τ3 + 0.5τ4|+

− 13τ1 + 1.5τ2 + τ3 − τ4 ≤ 5

Note. How does the model look like given τ = 0?
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Cutting Hyper-planes & RO

Comparison of objectives.

15
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Cutting Hyper-planes & RO

Pros
• The robust counterpart is convex w.r.t three uncertainty sets.

• The maximum and outliers can be controlled during
generating hyper-planes (Q and d).

• This approach ensures that the final uncertainty set is closed
and convex.

Cons
• There is no deterministic approach to find Q and d.

• For 2× 2 you need to create 4 cutting planes.
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¿ More Questions ?


